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Results and Prospects for K → πνν̄
David E. Jaffe, BNL

• Introduction

• K+ → π+νν̄: E949 experimental method and results

• K0
L → π0νν̄: KOPIO experimental method and prospects

• Summary and outlook
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K → πνν̄ in the Standard Model and beyond
�

�

�

�

�

� �
� �

�

�

�

�

� �
�

�

�

�

�

�

� �
�

• Negligible long dis-

tance effects (10−13)

• Hadronic matrix ele-

ment via isospin analog

K+ → π0e+ν

B(K+ → π+νν̄) B(K0
L → π0νν̄)

top dep. |V∗
ts Vtd | Im(V∗

ts Vtd )

Msmta,b,c (1.57+1.75
−0.82)× 10−10 < 5.9× 10−7

< 4.4× B(K+ → π+νν̄)

SMd (0.77± 0.11)× 10−10 (0.26± 0.05)× 10−10

SM Uncert.f 7% 2%

MFVg 1.91× 10−10 0.99× 10−10

EZPh (0.75± 0.21)× 10−10 (3.1± 1.0)× 10−10

Limits are at 90% CL.
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“Golden” modes and the CKM unitarity triangle

Process Expts

B(K0
L → π0νν̄) KOPIO, E391a

B(K+ → π+νν̄) E787/E949

A(B → J/ψK0
S; t) BaBar, Belle

∆ms/∆md CDF, D0

Comparison of |Vtd | from B(K+ → π+νν̄) and ∆ms/∆md is an important

test of the SM.

Comparison of sin 2β from B(K0
L → π0νν̄)/B(K+ → π+νν̄) and

A(B → J/ψK0
S; t) is perhaps the definitive test of CP violation in the SM.
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Rare K decays and new physics (ref:G.Isidori, hep-ph/0301159)

Precision measurements of rare decays:

1. Improve our knowledge of CKM matrix

2. Probe flavor structure of new physics

Rare processes mediated by Flavor Changing Neutral Currents are ideal

candidates:

• No SM tree-level contribution

• Strong suppression by CKM hierarchy

• Precisely calculable within SM if dominated by short-distance

dynamics

Present CKM fits involve only ∆F = 2 loops and tree level amplitudes.

We know very little about ∆F = 1 FCNC transitions.
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Each box corresponds to an independent combination of dimension-6 operators.

∆F=2 box

∆F=1 
4-quark box

gluon
penguin

Z0

penguin

H0

penguin

γ
penguin

Bd→  πK, Bd→  ηK,  
ACP(Bd→  φK), ...

Bd→  Xsγ, Bd→  πK,
ACP(Bd→  φK), ...

b→  s  (~λ2) b→  d  (~λ3)   s→  d  (~λ5)

∆Md   ACP(Bs→  ψ K)    ∆Ms   ACP(Bs→  ψ φ)         ∆MK   εK        

Bd→  ππ,  Bd→  ρπ, 
ACP(Bd→  ππ), ...

Bd→  Xdγ, Bd→  ππ,
ACP(Bd→  ππ), ...

Bd→  Xsl+l-, Bd→  Xsγ
Bd→  πK, Bs→  KK, ...

Bd→  Xdl+l-, Bd→  Xdγ
Bd→  ππ, Bs→  πK, ...

ε′ /ε,  
ACP(K→  3π), ...

KL→  π0l+l-, 
ε′ /ε,  ...

KL→  π0l+l-,
ε′ /ε,  ...

KL→  π0l+l-,  KL→  π0νν
K+→  π+νν,  ε′ /ε,  ...

KL,S→  µ+µ-

Bd→  Xsl+l-, Bs→  µ+µ-

Bd→  πK, Bs→  KK, ...
Bd→  Xdl+l-, Bd→  µ+µ-

Bd→  πK, Bs→  KK, ...

Bd→  µ+µ-Bs→  µ+µ-

decreasing       SM       contrib.

decrea-
sing

SM
 

contrib.

Th. error  < 10% 

   =  exp. error < 10% =  exp. error ~ 30-50% ~

~
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Name “PNN2” “PNN1”

Pπ (MeV/c) [140,195] [211,229]
Years 1996- 97 1995-98

Stopped K+ 1.7× 1012 5.9× 1012

Candidates 1 2
Background 1.22± 0.24 0.15± 0.05

B(K+ → π+νν̄) < 22× 10−10 (1.57+1.75−0.82)× 10−10

E787

K+ → π+νν̄
results

PNN1: PRL 88, 041803 (2002).

PNN2: Limit at 90%CL is com-

bined result from 1996 (PL B537, 211

(2002)) and 1997 (hep-ex/0403034)

data.
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K+ → π+νν̄ and background rates

Process Rate

K+ → π+νν̄ 0.77× 10−10

K+ → π+π0 2113000000.00× 10−10

K+ → µ+ν 6343000000.00× 10−10

K+ → µ+νγ 55000000.00× 10−10

K+ → π0µ+ν 327000000.00× 10−10

CEX ∼ 46000.00× 10−10

Scattered π+ beam ∼ 25000000.00× 10−10

π+ momentum in K+ rest frame

CEX ≡(K+n→ K0X)×(K0 → K0
L)× (K0

L → π+`−ν)

`− is µ− or e−

K+n→ K0X rate is empirically determined.
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E787 experimental method

Measure everything possible.

• Independent measurements of

range(R), energy(E) and mo-

mentum(P) of π+

• Positive identification of in-

coming K+ and outgoing π+

• Veto extra photons and

charged particles

Background must be suppressed

by 1011: Bkgd/S(SM) < 0.1

Measure background with data —

set cuts based on 1/3 of data and

evaluate bkgd with remaining 2/3.
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E949 experimental method

• ∼ 700 MeV/c K+ beam

• Stop K+ in scint. fiber target

•Wait at least 2 ns for K+ decay

• Measure P in drift chamber

•Measure rangeR and energy E

in target and range stack (RS)

• Stop π+ in range stack

• Observe π+ → µ+ → e+ in RS

• Veto photons, charged tracks

•New/upgraded detector el-

ements

K  Beam

Barrel
Veto

T

BVL
Range

RSSC
Endcap

Stack

Collar

DPV

(a)

+

Drift Chamber
I

TargetB4BeO
UPVC

AD

Collar

Barrel

Range Stack

Drift
ChamberVeto

Target
I

T

(b)

RSSC

BVL

50 cm
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E949 status for 2002 data taking

Upgrades to E787:

• More protons/sec from AGS

• Improved photon veto hermetic-

ity

• Improved tracking and energy

resolution

• Higher rate capability due to

DAQ and trigger improvements

Not optimal in 2002:

1. Spill duty factor.

2. Proton beam momentum.

3. K/π electrostatic separators.
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E949: Upgrade of photon veto

Improved photon veto hermetic-

ity.

Figure: background Rejection as

a function of K+ → π+νν̄ signal

Acceptance for the photon veto

cut for E787 and E949.

∼ 2× better rejection at nomi-

nal PNN1 acceptance of 80% or

∼ 5% more acceptance in E949

with same rejection as E787.
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E787 and E949 analysis strategy

• “Blind” analysis. Don’t examine signal region until all

backgrounds verified.

• A priori identification of background sources.

• Suppress each background source with at least two independent cuts.

• Backgrounds cannot be reliably simulated: measure with data by

inverting cuts and measuring rejection taking any (small) correlations

into account.

• To avoid bias, set cuts using 1/3 of data, then measure backgrounds

with remaining 2/3 sample.

• Verify background estimates by loosening cuts and comparing

observed and predicted rates.

• Use MC to measure geometrical acceptance for K+ → π+νν̄. Verify by

measuring B(K+ → π+π0).
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E787 and E949 analysis strategy

• “Blind” analysis. Don’t examine signal region until all backgrounds

verified.

• A priori identification of background sources.

• Suppress each background source with at least two independent cuts.

• Backgrounds cannot be reliably simulated: measure with data by

inverting cuts and measuring rejection taking any (small) correlations

into account.

• To avoid bias, set cuts using 1/3 of data, then measure backgrounds

with remaining 2/3 sample.

• Verify background estimates by loosening cuts and comparing

observed and predicted rates.

• Use MC to measure geometrical acceptance for K+ → π+νν̄. Verify by

measuring B(K+ → π+π0).
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Background suppression

Suppression method

Source Kinematics Particle ID Veto Timing

K+ → µ+ν(γ)
√ √

(
√
)

K+ → π+π0
√ √

Scattered beam
√ √

CEX
√ √

CEX ≡ K+n→ K0p , K0
L → π+`−ν

Particle ID includes beam Cherenkov, dE/dx and π → µ→ e detection

Veto includes both photon and charged particle vetoing
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E787 and E949 analysis strategy

• “Blind” analysis. Don’t examine signal region until all backgrounds

verified.

• A priori identification of background sources.

• Suppress each background source with at least two independent cuts.

• Backgrounds cannot be reliably simulated: measure with data by

inverting cuts and measuring rejection taking any (small) correlations

into account.

• To avoid bias, set cuts using 1/3 of data, then measure backgrounds

with remaining 2/3 sample.

• Verify background estimates by loosening cuts and comparing

observed and predicted rates.

• Use MC to measure geometrical acceptance for K+ → π+νν̄. Verify by

measuring B(K+ → π+π0).
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Example: K+ → π+π0 background rejection

Left: Kinematically select K+ → π+π0 and apply the photon veto.

Photon veto: Typically 2-5 ns time windows and 0.2 - 3 MeV energy

thresholds

Right: Select photons. Phase space cuts in P, R, E.
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E787 and E949 analysis strategy

• “Blind” analysis. Don’t examine signal region until all backgrounds

verified.

• A priori identification of background sources.

• Suppress each background source with at least two independent cuts.

• Backgrounds cannot be reliably simulated: measure with data by

inverting cuts and measuring rejection taking any (small) correlations

into account.

• To avoid bias, set cuts using 1/3 of data, then measure backgrounds

with remaining 2/3 sample.

• Verify background estimates by loosening cuts and comparing

observed and predicted rates.

• Use MC to measure geometrical acceptance for K+ → π+νν̄. Verify by

measuring B(K+ → π+π0).
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Verify background by loosening cuts

Define rejection ≡ 1 when cuts are set to produce

pre-determined signal region (“signal box”)

Relax cut to reduce rejection by ×10. New, larger region
should have 10× background of signal box.

Example: For K+ → π+π0 background, simultaneously loosen
photon veto (PV) and kinematic (KIN) cuts each by ×10.
Expect 10× 10 = 100 times more background than that of the
signal box.
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Compare background prediction with observation near signal region

PV×KIN 10× 10 20× 20 20× 50 50× 50 50× 100

Kπ2 Observed 3 4 9 22 53

Predicted 1.1 4.9 12.4 31.1 62.4

TD×KIN 10× 10 20× 20 50× 50 80× 50 120× 50

Kµ2 Observed 0 1 12 16 25

Predicted 0.35 1.4 9.1 14.5 21.8

TD×KIN 10× 10 20× 20 50× 20 80× 20 80× 40

Kµm Observed 1 1 4 5 11

Predicted 0.31 1.3 3.2 5.2 10.4

Kπ2 ≡ K+ → π+π0; Kµ2 ≡ K+ → µ+ν;

Kµm ≡ K+ → µ+νγ, K+ → π0µ+ν and K+ → π+π0 with π+ → µ+ν

decay in flight

TD≡ π → µ→ e identification, PV≡Photon Veto rej., KIN≡ kinematic rej.

M ×N ≡ reduction in rejection with respect to signal region
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Compare background prediction with observation near signal region

Quantify consistency: Fit Nobs = cNpred and expect c = 1.

Background c χ2 Probability Total background

Kπ2 0.85+0.12−0.11 0.17 0.216± 0.023

Kµ2 1.15+0.25−0.21 0.67 0.044± 0.005

Kµm 1.06+0.35−0.29 0.40 0.024± 0.010

Deviation of c from unity is taken into account in evaluation of

B(K+ → π+νν̄)

Beam and CEX background is 0.014± 0.003

The calculated number of background events in the signal region is

0.30± 0.03 from all background sources.
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E787 and E949 analysis strategy

• “Blind” analysis. Don’t examine signal region until all backgrounds

verified.

• A priori identification of background sources.

• Suppress each background source with at least two independent cuts.

• Backgrounds cannot be reliably simulated: measure with data by

inverting cuts and measuring rejection taking any (small) correlations

into account.

• To avoid bias, set cuts using 1/3 of data, then measure backgrounds

with remaining 2/3 sample.

• Verify background estimates by loosening cuts and comparing

observed and predicted rates.

• Use MC to measure geometrical acceptance for K+ → π+νν̄. Verify by

measuring B(K+ → π+π0) = 0.215± 0.005.

World average value is 0.2113± 0.0014.
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E949 improved analysis strategy†

1. E787 background estimation methods are reliable

2. Divide signal region into cells and calculate background (bi)

and signal acceptance (si) for each cell. Example: Tighten

PV cut to select subregion with 1/10 of the total predicted

K+ → π+π0 background within “signal box”

3. Can calculate B(K+ → π+νν̄) using si/bi of any cells

containing candidates using likelihood ratio method.

4. Increase total size of signal region to increase acceptance at

cost of more total background

† With age comes wisdom.
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Opening the box

Range (cm) vs Energy

(MeV) for E949 data after

all other cuts applied.

Solid line shows signal re-

gion.

Single candidate found.

Cluster near 110 MeV

is unvetoed K+ → π+π0.
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Event display
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How likely is it that the candidate is due to known background?

Question: Suppose we do 100 experiments, how many will have a

candidate from a known background source that is as signal-like or more

signal-like than the observed candidate?

Answer: ∼ 7

The sum of background in all cells with si/bi greater or equal to the cell

containing the observed candidate is 0.077. The probability that 0.077

could produce one or more events is 0.074 (∼ 7/100).

The E949 candidate is more likely to be due to background than the two

E787 candidates.

Candidate E787A E787C E949A

Probability 0.006 0.02 0.07
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E787 E949

Stopped K+ (NK) 5.9× 1012 1.8× 1012

Total Acceptance 0.0020± 0.0002 0.0022± 0.0002

Total Background 0.14± 0.05 0.30± 0.03

Candidate E787A E787C E949A

Si/bi 50 7 0.9

Wi 0.98 0.88 0.48

bi = background of cell containing candidate

Si ≡ BAiNK = signal for cell containing candidate

Ai ≡ acceptance

B = measured central value of K+ → π+νν̄ branching fraction

Wi ≡ Si/(Si + bi) = event weight

Event weight Wi and Si/bi assumes SM signal hypothesis as well as

calculated background.
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Range (cm) vs Energy

(MeV) for combined E787

and E949 data after all

other cuts applied.

Dashed line is E787 signal

region.

Solid line is E949 signal re-

gion.
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Combined E787 and E949 results for B(K+ → π+νν̄)

B(K+ → π+νν) = (1.47+1.30
−0.89)× 10−10 (68%CL interval)

B(K+ → π+νν) > 0.42× 10−10 at 90%CL.

SM prediction†: B(K+ → π+νν̄) = (0.77± 0.11)× 10−10

The probability that background alone gave rise to

the three observed events or to any more signal-like

configuration is 0.001.

E787 result: B(K+ → π+νν) = (1.57+1.75
−0.82)× 10−10

Combined results: PRL 93(2004) 31801, hep-ex/0403036

† Reference: Buchalla& Buras, NPB548 309 (1999);

Isidori, hep-ph/0307014;Buras, hep-ph/0402112
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Impact of B(K+ → π+νν̄) on Unitarity Triangle

 
10.80.60.40.2-0.2-0.4-0.6-0.8-1-1.2-1.4-1.6

 

1

0.8

0.6

0.4

0.2

-0.2Green lines show B(K+ → π+νν̄) impact on Unitarity Triangle: central

value (dashed), 68% interval (dot-dash), 90% interval (solid). Theoretical

uncertainty is included.

Red ovals show 68%, 90% and 95% areas from other measurements (|Vub|,
εK , sin 2β, ∆md, ∆ms/∆md)

Provided by Gino Isidori.
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Progress in K+ → π+νν̄

E949(02) = combined E787& E949.

E949 projection with full running period.

Narrowing of “SM prediction”
assumes measurement of Bs
mixing consistent with prediction.
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K0
L → π0νν̄: Fifteen years ago

“Experimentally, the problems are perhaps best represented by the

statement that nobody has yet shown that a measurement of this decay is

absolutely impossible.” F.J.Gilman, “CP Violation in Rare K Decays”, Blois

CP Violations 1989:481-496
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K0
L → π0νν̄ Progress

KTeV result with “pencil”

K0
L beam (PLB447 (1999) 240).

E391a, JHF expts use a

similar technique.
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The KOPIO Technique: Work in K0
L CMS

Measure everything possible.

Microbunched K0
L beam

Measure γ directions in PR

Measure γ energy in CAL

Reconstruct π0 from γγ

Measure K0
L velocity from TOF

Photon veto

Charged track veto

Kinematic veto
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3

Micro-bunched slow extraction

Time
Extraction resonance

F
re

qu
en

cy Empty buckets generate energy modulation of debunched beam
Higher cavity voltage and/or smaller ∆P/P  →  shorter bunches
Need ~200 ps bunches every 40 ns with ~95% extraction efficiency

Debunched beam

40 ns200 ps
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Microbunch width σ and interbunch extinction E

meas. σ = 240 ps

93 MHz RF

1

10

10 2

10 3

100 200 300 400 500 600 700 800
TDC RF (ns)

meas. E = (7± 5)× 10−6

4 MHz RF

pred. σ = 215 ps

93 MHz RF

pred. E < .001

4 MHz RF

25/100 MHz RF

Predicted σ = 185 ps

Predicted E ∼ 0.002
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KOPIO neutral beam

The central production angle of

the KOPIO neutral beam is 42.5◦.

The aspect ratio is 100× 5 mrad2

(horiz× vert) after passing thru 5

cm of Pb, sweeping magnets and

a collimation system.

Expect ∼ 3.5 K0
L and ∼ 600(300) n

with E(n) > 10(262) MeV per

microbunch.

Figure shows the calculated nor-

malized neutron profiles for 2 as-

pect ratios at the front of the pre-

radiator (1400 cm from target)

Aspect ratio # 1 is 100×5 mrad2.
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Preradiator
2 X0 alternating DC & scint. planes
4m × 4m (four quadrants)
200,000 channels

σ ~ 25 mr @ 250MeV

γ angular resolution measured at NSLS
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Shashlyk calorimeter energy resolution (physics/0310047)
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Monte Carlo simulation
KOPIO module (simulation)

• BNL E865

H BNL E923 prototype

¥ KOPIO prototype

? another KOPIO prototype
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KOPIO Charged particle veto

Thin scintillator read

directly by PMTs in

vacuum.

Need ε̄(π−) < ×10−4 and

ε̄(π+) < 10−5.
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red: π-

green: π+

PSI results (TN027)
full dots: 50 keV threshold
open dots: 1 mg/cm2 dead layer

triangles: upper limits Inagaki
NIM A359 (1995) 478

pessimistic

optim
istic
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Fig.1:Base design of catcher

one module
distribution
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March 6, 2004 KOPIO meeting, T. Nomura (Kyoto U.) 6

Expected performance with current design

Photon efficiency / Neutron sensitivity

» Average over +/- 10cm(y), normal incident to Catcher

Neutron sensitivity

0.3% @ 0.8GeV

Neutron energy (GeV)
0.5 1.0 1.5 2.0 2.5 3.0

10-2

10-3

10-4

10-5

Photon efficiency

Photon energy (GeV)
0.2 0.4 0.6 0.8 1.0 1.2

>99% @ 300MeV
95

90

85

100
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Background suppression tools

K0
L Decay B/3× 10−11 Kinematic Photon veto Charged veto

π0π0 even 3.1× 107 E∗
π

√√

π0π0 odd 3.1× 107 |E∗
1γ − E∗

2γ |, Mγγ

√√

π±e∓νγ 1.2× 108 Mγγ , χ
2 √ √

π+π−π0 4.2× 109 E∗
π, EMISS

√√

π0π±e∓ν 1.7× 106 E∗
π

√√

π0π0π0 7.0× 109 E∗
π

√√√

π0γγ 5.6× 104
√√

γγ 2.7× 107 Mγγ , E
∗
π

even ≡ both γ from same π0

odd ≡ γ from different π0

χ2 ≡ χ2of fit of γ 3-momenta to a common vertex
Mγγ ≡ 2 photon invariant mass
E∗
i ≡ energy in K0

L rest frame, i = π0, γ1, γ2
EMISS ≡ E(K0

L)− E(γ1)− E(γ2)
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Kinematic rejection of K0
L → π0π0 background
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K0
L → π−e+νγ2 (e+e− → γ0γ1) background

Background from K0
L → π±e∓νγ occurs when the e+ converts at the

vacuum vessel. π0 candidates are formed from γ1γ2. For e
+e− → γ0γ1,

p(γ1) ≈ p(e+) and p(γ0) ≈ p(e−). Modest rejection possible from lower

energy γ0 and increased χ2 from slight change of γ1 from the original e+

direction.
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Kinematic rejection of K0
L → πππ backgrounds
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KOPIO signal and background estimates



 KOPIO

∆B/B ≈ 20% or

∆η/η ≈ 10% at S/B=2

Process Events

K0
L → π0νν̄ at SM rate 40

K0
L → π0π0 12.4

K0
L → π±e∓νγ 4.5

K0
L → π−π+π0 1.7

K0
L → π±e∓ν 0.02

K0
L → γγ 0.02

Λ→ π0n 0.01

Interactions (nN → π0X) 0.2

Accidentals 0.6

Total Background 19.5
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Possible impact of E949,KOPIO K→ πνν̄ measurements

Assumptions:

E949 & KOPIO run for

approved running period.

K→ πνν̄ rates at twice SM expectation

∆ms = 17.0± 1.7 ps−1

sin 2β = 0.70± 0.02
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Summary and outlook for K→ πνν̄
E949 has observed an additional K+ → π+νν̄ candidate and measures

B(K+ → π+νν) = (1.47+1.30−0.89)× 10−10 for the combined data of E787 and

E949 (PRL 93(2004) 31801). The result is consistent with the current

Standard Model prediction.

E949 analysis of K+ → π+νν̄ for momenta P (π+) < 195 MeV/c in progress.

E949: Approved (1999), HEP at AGS halted(2002), other funding sources sought...

Another stopped-K+ experiment to measure K+ → π+νν̄ under

consideration at KEK in Japan. K+ decay-in-flight experiments under

consideration at FNAL and CERN.

E391a: (K0
L → π0νν̄ at KEK) Completed first run in June 2004, results early 2005.

KOPIO: Approved by NSF(2003), construction start in 2005, in need of

zealous collaborators.

These experiments would be able to test the precise predictions

for K → πνν̄ branching fractions.

Thanks to G.Isidori, E949 & KOPIO collaborations.
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Extras
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B(K+ → π+νν̄)=K+

(

[

Imλt
X
λ5

]2
+
[

Reλc
P0
λ + Reλt

X
λ5

]2
)

B(K0
L → π0νν̄)=K0

(

[

Imλt
X
λ5

]2
)

λi ≡ V ∗
isVid

K+ ≡ r+B

K0 ≡ r0Bτ(K
0
L)/τ(K

+)

B ≡ 3α2B(K+ → π0e+ν)/2π2 sin4 θW

X ≡ X(xt) ≡ xt

8(xt−1)

(

x+ 2 + 3x−6
x−1 lnx

)

xt ≡ (mt/mW )2

r+ = 0.901

r0 = 0.944

P0 = 0.40± 0.06 (charm)
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Pulse fitting in stopping counter
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Compare TD properties of candidate with π+ and µ+ samples
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Remind: E949-2002 beam conditions were not optimized

• a faiulre of the AGS power supply

• reduced operating voltage of one of the DC separators

• 12 weeks

The conditions will be improved in the next run.

E787 E949-’02 E949 optimized

AGS energy GeV 24 22 24

beam spill sec 2.2 2.2 4.1

cycle sec 4.2 5.4 6.4

duty factor % 52 41 64

K+/π+ 4 3 4

NK in the spill 1.8 2.5 5.0

NK MHz 0.8 1.2 1.2

rates in the detector M ×2 ×2 or less

beam time weeks 12 ≥60

17
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PNN2: K+ → π+νν̄ below K+ → π+π0 peak

• More phase space than PNN1

• Less loss due to π+N interactions

• P (π+) = (140,195) MeV/c probes

more of K+ → π+νν̄ spectrum

• Main background mechanism is

K+ → π+π0 followed by π+ scat-

ter in target.

FIBER TARGET

K+

Kaon Hit Fibers

Decay

Pi+

Gamma1

Gamma2
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E949 PNN2 analysis

• E787: PNN2 acceptance approx.

half PNN1 acceptance

• Goal is equal PNN2 and PNN1

sensitivity with S/B = 1. This

implies ×2 increase in acceptance

and ×5 increase in background re-

jection.

• Upgraded photon veto increased

PNN1 background rejection.

Quantitative assessment of im-

provement for PNN2 underway.

• Improved algorithms to identify

K+ → π+π0 followed by π+ scat-

ter in target.
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Candidate E787A
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Candidate E787C
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E949 Range vs Mo-

mentum accepted

by trigger



David E. Jaffe (Virginia Tech Particle Physics Seminar) 60 6 Dec 2004

KOPIO Beam and Constraints



David E. Jaffe (Virginia Tech Particle Physics Seminar) 61 6 Dec 2004

Parameter Minimal Expected
Requirement Performance

Eγ resolution 3.5%/
√

E 2.7%/
√

E
θγ resolution (250MeV) (25 − 30) mr 23 mr

tγ resolution 100ps/
√

E 50ps/
√

E
xγ, yγ resolution(250MeV) 10mm < 1mm
µ-bunch width 300ps 200ps
γ-veto inefficiency εE787 0.3εE787

Shashlyk calorimeter

2 X0 Preradiator

Beam " veto

√

Scintillator

Paper + lead
+ paper

PM tube

50   m steel
tapes
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Simulation: Combined Energy Resolution

3%

( )E GeV
σ
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E391a at KEK


